

 Senior Design 2018/2019

 Maroon Five

Anas Alhamad

Arik Espineli

Jasmine Gill

Miranda Sweigert

Jeff Smith

Design Review 1.2 Documentation

12/4/18

1

Table of Contents

Executive Summary 2

Risk Reduction Prototype 3

Electrical RRP 3

Mechanical RRP 9

Specification Table 14

Engineering Analyses 15

Electrical 15

Mechanical 20

Risks Reduced or Remaining 22

Updated Project 23

Updated Electrical Block Diagram 23

Updated Mechanical Block Diagram 24

Rigorous winter break and first week schedule 25

Preliminary Full Year Schedule 27

Winter Quarter 27

Spring Quarter 34

Appendix 38

Specification Supporting Material 38

Engineering Analysis Supporting Material 53

References 62

2

Executive Summary

Research shows that employees and machinery in an industrial environment may not be

sufficiently protected from machine fires. In industrial and manufacturing environments an

average of 37,000 fires occur each year. This amounts to $1 billion in property damage and

hundreds of injuries [1]. Even though machines are designed with the highest safety standards,

the materials they work with may be susceptible to fires. Fires can also start due to tool failures,

programming mistakes for CNC machines and more [2]. These fires could be prevented by

assigning someone to be constantly be on fire watch, however this is not always possible. While

fire watchers may prevent or stop a fire they still come at a cost to companies. The goal of

Maroon Five is to create a device that can protect a company’s interests while not costing too

much.

Maroon Five aims to accomplish this by creating an X-Y ceiling gantry system with an

integrated fire extinguisher. This system would automatically detect fires using sensors

integrated with a microprocessor. The system would move the extinguisher to the location of the

fire and suppress the fire automatically, eliminating the need for a designated fire-watcher, and

decreasing damage that would normally be caused by sprinkler systems. This system would be

mounted to the existing ceiling infrastructure and use sensors on the system and placed around

the shop area to detect fires.

The highest risks in this solution are being able to accurately detect a fire in a shop

environment and the successful movement of the extinguishing housing to the area of the fire. It

is also important that the system be able to decide if a fire or heat source is wanted (welding,

plasma cutting, etc.) or unwanted (shop fires).

To demonstrate the feasibility of this solution, two risk reduction prototypes were built.

One to demonstrate the ability to code sensors to detect fires. A combination of infrared,

ultraviolet, thermal, and smoke sensors will be integrated with a microcontroller and

programmed to successfully detect a fire. The other demonstrates the feasibility of designing

and fabricating a movement system that can be mounted to the ceiling. A four foot by four foot

stable two axis rail system mounted on ceiling supports will be constructed to successfully move

in both X and Y directions. These prototypes will show that it is possible to build the full system

to detect, locate, and extinguish a fire.

3

Risk Reduction Prototype

Electrical RRP

For the electrical RRP Maroon Five Engineering researched the best sensors to use to

accurately detect a fire. The electrical engineers tested infrared (IR), ultraviolet (UV), thermal,

and smoke sensors using a live fire. The selected sensors were integrated with a

microcontroller where the output data was saved to be analyzed later.

 Fig. 1: Experiment Site (Magnolia Park)

Fig 2: Raspberry Pi Circuit

Pictured above (Fig. 1) is the area where the electrical RRP (Fig. 2) testing was conducted. The

barbeque pit allowed for semi-accurate placement of charcoal so that the size of the fire was

near the size specified in D002. The main concern faced with testing outdoors was that the

4

height of the fire, due to wind conditions, varied uncontrollably. This lead to, at certain points

during the test, a flame that was larger than 8”x8”x8”.

Fig 3: IR Values - Small Flame Fig 4: IR Values - Large Flame

 Fig 5: UV Values - Small Flame Fig 6: UV Values - Large Flame

Note: Small Flame = ~8”x8”x8” && Large Flame = Flames larger than ~10”x10”x10”

 Fig 7: Smoke Data - Different sensor angles Fig 8: Smoke Data - Varying sensor distance

5

Fig 9: Smoke Data - Constant increase in distance directly in the path of the smoke

Fig 10: Sample Thermal Camera Output (8x8 array of temperatures)

The charts (Fig. 1-10) above display the output from the sensors tested. The thermal camera

output (Fig. 10) displays the change in temperatures as seen by the sensor when it was pointed

at the flame. This will be useful in developing a fire detection algorithm by utilizing a rate of

change formula for the the temperatures along with the outputs from other sensors leading to a

higher fire detection rate.

For most of the sensor tests performed the sensor being tested was not immediately pointed at

the flame. There was a delay of a few seconds so that baseline values which would be used

distinguish the values for flame recognition could be recorded. This was repeated multiple times

to test the consistency and sensitivity of any given sensor as evidenced by the multiple peaks

and valleys of each graph.

D001: Fire Recognition - Timing: The system shall be able to recognize when a fire occurs

within 90 seconds. The system should be able to recognize when a fire occurs within 60

seconds. The sensors will be able to detect when a fire occurs in the room. Ninety seconds has

been determined to be sufficient for our RRP response time. This will be validated by using a

timer that will record how long it took for the system to detect the fire within ignition.

It can be observed in the charts above (Fig.1-10) that the sensors recognize the fire well

under 60 seconds. The valleys observed in the IR sensor vs time graph (Fig. 3 & 4)

occur when the sensor is pointed at the flame. The smoke sensor data (Fig. 8) was

gathered by moving the sensor close to the flame (higher density) and moving it away

6

slowly (lower density). The output from the UV sensors (Fig. 5 & 6) increases as it

recognizes the fire, it was able to detect the flame within the first few seconds.

 Fig 11: Thermal Camera Partial Data Output Code

The readings for the thermal camera were taken at half second intervals (Fig. 11) and it

can be seen from Fig.10 that the camera recognizes the flame, indicated by the change

in temperatures, within 1.5 seconds.

7

D002: Fire Recognition - Size: The system shall be able to recognize a fire that is 8 inches

in diameter. The system should be able to recognize a fire that is 6 inches in diameter.

The system should be able to detect a wide range of fire sizes, the smallest of which is a six-

inch fire. This size was chosen because the size of a welding & plasma cutter flames can range

from one to six inches. The size of the flame for testing will be validated by building the fire on a

measured piece of equipment.

Fig 12: Testing smoke sensor with an ~8” fire Fig 13: Testing sensors with a large fire

The size of a recognizable flame varied with each sensor and was not as accurate as

the other tests due to wind conditions. The furthest a ~6” flame was detected was 14”-

16” away. This was near enough to heat the sensor to unsafe levels and was deemed

unsafe. An ~8” flame on the other hand was detectable from 2-3 feet away by all of the

sensors except for the smoke sensor.

Fig. 9 shows the variation in the data collected by the smoke sensor as it was moved

around the flame to find the ideal angle and distance. It was discovered that it only

detected the smoke if it was placed directly in the path that the smoke was blowing. It

was not sensitive enough to discover the flame even if the smoke was passing near it.

8

D003: Fire Recognition - Accuracy: The system shall accurately detect a fire 9 out of 10

times. The system should accurately detect a fire 10 out of 10 time. The accuracy of

detection makes the system more reliable. This will be validated by testing the system

repeatedly and recording results.

The tests for flame detection were repeated several times to determine the reliability of

the sensors. Each time the tests were run the sensor was pointed at and away from an

8” flame at the maximum distance that they were able to detect the flame. This fulfilled

D003 as the sensors were able to detect the flames every time they were pointed at it.

9

Mechanical RRP

For the RRP Maroon Five Engineering designed and constructed a stable two axis rail

system that can be mounted to existing ceiling infrastructure that will not cause damage to the

built environment around it.

M001: Middle Bar Movement - the middle bar of the ‘H’, or gantry, shall successfully move in the

y axis between the other two beams. The beam shall cover 3 total feet in the y direction, 1.5

feet in positive and negative directions. The beam movement should cover 4 total feet, 2

feet in positive and negative y directions. Current plans are that 2 feet is expected to be

sufficient to show movement is possible to reach the location of the fire, this means a 16 square

foot area. This size has been determined based on equipment located in the Seattle Pacific

University Machine Shop. This will be tested by measuring the full range of motion of the axis

and compare it to the actual size.

M001 was not successfully met. This is because the manufacturing time for the motor

mount was longer than anticipated due to lack of access to the shop. Maroon Five

engineers are confident that with sufficient time to complete fabrication of the motor

mount, that this specification would be met successfully. In the video

(https://drive.google.com/file/d/1W0AVCo4X4vSekmBRbSfLgAdIztOkwVGE/view?usp=s

haring) it can be seen that both motors run successfully together. This means that once

the motor for bridge movement is mounted, the motors would work successfully together

on the system. The motor mounts will be redesigned over winter break to ensure early

manufacturing during winter quarter.

https://drive.google.com/file/d/1W0AVCo4X4vSekmBRbSfLgAdIztOkwVGE/view?usp=sharing
https://drive.google.com/file/d/1W0AVCo4X4vSekmBRbSfLgAdIztOkwVGE/view?usp=sharing

10

M002: Extinguisher Movement - the extinguisher housing will move along the rail system

successfully in the x direction. The housing shall cover 3 total feet in the x direction, 1.5 feet

in positive and negative directions. The housing movement should cover 4 total feet, 2

feet in positive and negative x directions. Current plans are that 2 feet is expected to be

sufficient to prove movement and reach the location of the fire. This will be sufficient within the

given area, see M001. This will be verified by measuring the full range of motion of the axis and

compare it to the actual size.

 Fig 14: Set-up for verifying M002

M002 was met successfully. The motor to move the housing moved over 3 feet in the x

axis, which successfully meets the threshold value for this specification. Set up of the

motor for testing can be seen in figure 14. In the video

(https://drive.google.com/file/d/1478e9Mn2jsDL4ofbgP7OOzRnnqv5GVUy/view?usp=sh

aring) this can be seen.

https://drive.google.com/file/d/1478e9Mn2jsDL4ofbgP7OOzRnnqv5GVUy/view?usp=sharing
https://drive.google.com/file/d/1478e9Mn2jsDL4ofbgP7OOzRnnqv5GVUy/view?usp=sharing

11

M003: System Movement - the extinguisher housing will move to a specified position in the

room. The housing shall move within a 1-foot radius of specified location and should

move within a 0.5-foot radius of specified location. The fire extinguisher will be most

effective with a sweeping motion. If the trolley is located within this range the extinguisher will be

able to suppress our target fire size, see D002. This will be verified by inputting a desired

location and physically measuring the actual position and compare it to the desired location.

M003 was partially met. This is because M001 was not met, so a location could not be

prescribed for both x and y coordinates. Though when prescribing a coordinate through

meeting M002, the housing moved successfully to within 1 inch of the desired location.

Set up for this can also be seen in figure 14.

12

M004: Bridge Speed of Movement - The motor required for the movement of the bridge in

the x-direction shall supply a torque that provides a speed of 4 feet per second, and

should supply a torque that provides a speed of 8 feet per second. This was determined by

measuring the average speed of human response to a fire and how long it would take to obtain

an extinguisher and extinguish a fire. This took an average of 20 seconds to move 20 foot,

which is a speed of 1 foot per second. Our system must be faster than human response. This

will be validated by making the motor move the bridge a specified distance and recording the

time.

This specification was not met because M001 was not met. Based on the movement

from M002, Maroon Five engineers are confident that M004 can be met, since the speed

of the motor for M002 met the threshold of this specification. See M001 for completion

information.

13

P001: The power needed for all components shall not be greater than 15 Amps and

should not be greater than 12 Amps. The device needs to adhere to code standards and

easily be utilized in a standard outlet. At 120 volts in a standard outlet, the power supply should

not be higher than 15 Amps.

The total current pulled in the system is equal to the current pulled by the Switching

Power Supply which has a maximum power of 500W. This means the maximum current

pulled from the electrical outlet is at 4.1A if ideal Switching Power Supply or 5A if

accounting for 20% power lost. The motors were also tested to ensure enough power is

being supplied when needed. To achieve that the circuit was opened and then the

Ammeter was placed between the switching power supply and motor driver (Fig 14). The

reading was recorded while X-Motor was at stop (0.62A) and while turning (1.09A). The

method was then repeated with Y-Motor and recorded (0.77A) while turning. These

numbers agree with the range given by the motor drivers’ datasheet that has a maximum

current of 5A at 48V. This fulfilled P001 as the maximum supplied current from the

electrical 120VAC outlet will not exceed a total of 12A.

Fig 15: Mechanical Block Diagram

14

Specification Table

Spec ID Requirement Threshold

(Shall)

Objective

(Should)

Validation Method Met?

D001 Fire

Recognition -

Timing

Recognize fire

within 90

seconds

Recognize

fire within 60

seconds

Testing with different fire

scenarios and sensors in a

controlled area.

Yes

D002 Fire

Recognition -

Size

Recognize a

fire that is 8

inches in

diameter

Recognize a

fire that is 6

inches in

diameter

Testing with small fires that

are built and see if small or

larger fires are detected.

 Possibly

D003 Fire

Recognition

 - Accuracy

Recognize a

fire accurately

9/10 times

Recognize a

fire

accurately

10/10 times

Test the system repeatedly

in the scenarios described

in the other specs.

 Yes

M001 Middle Bar (y)

Movement

Move 1 foot in

positive and

negative y

Move 2 feet

in positive

and negative

y.

Tape Measure.

 No

M002 Extinguisher

(x) Movement

Move 1 foot in

positive and

negative x

Move 2 feet

in positive

and negative

x

Tape Measure Yes

M003 Housing

Movement

Move to within

a 6 inch

radius of fire

location

Move to

within 4 inch

radius of fire

location

Tape Measure Partially

M004 Bridge Motor

Speed

Shall move

the bridge at 4

feet per

second

Should move

the bridge at

8 feet per

second

Recording the time it takes

to move to specified

distances

No

P001 Power Supply <15A <12A Measuring supplied current

with Ammeter

 Yes

15

Fig 16: Specification Table

Engineering Analyses

Electrical

Power Consumption - Compute the maximum estimated power consumption for each element

at its rated voltage to find the total needed power that help selecting a proper power supply

equipment parts.

The main power supply for the unit is the electrical outlet plug (120VAC). Three more

power supplies are supplied by the main outlet plug (120VAC) to provide rated voltage to

the electrical elements. The max current that the main power supply sees is 2.08 Amps.

In the table below (Fig 18) the highlighted numbers in orange indicate the changes after

testing the sensors and analyzing their data. This is based on a positioning solution that

fits the sensors characteristics.

Circuit Element Voltage (Volts) Current
(Amps)

Peak Power
(Watts)

Qty Total
Current
(Amps)

Total Peak
Power
(Watts)

Supplying
Power to

Other
Elements

 (Y/N)

Switching Power
Supply

120 VAC 5 A 500 W
(If full load)

1 -- 100 W
(accounting

for 20%
power lost)

Y
(powering the

unit)

Motor Driver 1 48 VDC 5 A 240 W 1 -- 48 W
(accounting

for 20%
power lost)

Y
(powering
7.07Nm
Motor)

Motor Driver 2 48 VDC 5A 240 W 1 -- 48 W
(accounting

for 20%
power lost)

Y
(powering

8.5Nm Motor)

Raspberry Pi 3
B+

5 VDC 1 A 5 W 1 1 A 5 W N
(Only signal)

Stepper Motor
(7.07Nm)

3.39 VDC 4.24 A 14.4 W 1 4.24 A 17.28 W
(accounting

for 20%
power lost)

N

Stepper Motor
(8.5Nm)

5 VDC 5 A 25 W 1 5 A 30 W
(accounting

for 20%
power lost)

N

UV Sensor 1

5 VDC 16mA

0.08 W

1
 10

16 mA
 160 mA

0.08 W
 0.8 W

N

16

UV Sensor 2 5 VDC 16 mA 0.08 W 1 16 mA 0.08 W N

IR Thermal
Camera

5 VDC 100 mA

0.5 W 1
 4

100 mA
 400 mA

0.5 W
 2 W

N

IR Sensor

5 VDC 16 mA 0.08 W

1
 10

16 mA
 160 mA

0.08 W
 0.8 W

N

Smoke Sensor

5 VDC 16 mA 0.08 W 1
 8

16 mA
 128 mA

0.08 W
 0.64 W

N

Ultrasonic
Sensor

5 VDC 16 mA 0.08 W 1
 4

16 mA
 64 mA

0.08 W
 0.32 W

N

Total
(Current is

calculated from
total power at

120VAC)

-- -- -- -- 2.08 A

 2.11 A

249.18 W

 252.92 W

Fig 16: Power Consumption - power and current needed to be supplied at maximum load

Fire Detection - Research the type and size of fire that we’ll be trying to suppress and the

sensors that will be used to detect that fire.

The project specification for fire detection is for class A, B & C fires. To determine

whether these fires can be detected UV, IR, smoke, and thermal sensors will be used.

The following table describes the types of fire and the sensors that can be used to detect

that specific type of fire.

Class of Fire Materials Sensors

A Solid materials
 i.e. wood, paper or textiles

UV, IR & Thermal

B Flammable liquids
i.e. petrol, diesel or oils

Thermal

C Electrical Fires
i.e. short circuits or overloaded electrical

cables

UV, IR & Thermal

Fig 17: Class of Fire and Relevant Sensor Chart

Below is a chart of the ideal distance and position for each sensor compiled by using the

data collected during the specification testing. The testing for each sensor was

terminated at the furthest distance it was unable to accurately detect an ~8”x8”x8” -

10”x10”x10” flame. The size of the flame may not be accurate as the wind either

increased or decreased the volume of the flame.

17

Sensor Ideal Distance (ft.) Ideal Position

UV 2 - 3 ft. 45° - 60°

Backup UV 2 - 3 ft. 45° - 60°

Flame (IR) 2 - 3 ft. 45° - 60°

Thermal Camera 6 ft. Any plane above the fire

Smoke 1.5 - 2 ft. Directly above fire

Fig 18: Ideal Distance and Position Chart

Fig 19: Distance Testing (Smoke Sensor: Directly above flame ~1.5-2ft)

The range for the sensors to detect the fires (Fig. 18) were found to be unsuitable for the

project. After a consultation with Dr. Lindberg the EE team was advised to use the same

sensors as above with a double convex lens (Fig. 20 & 21). This lens would help

increase the range that the sensor could detect the fire but it would narrow the field of

view. This particular lens was only able to enhance the range of the UV sensor thus the

increased range tests were completed with the UV sensors to prove that this method

could be used with other sensors given the right lens.

18

 Fig 20: Double Convex Lens Fig 21: Lens Measurement

The tests with the lens were completed in a new location with a 3D printed tube (Fig. 22

& 23) that held the lens and the sensor to remove any noise from the system. The tests

yielded promising (Fig. 24-26) results. The UV sensor was able to detect the fire from 8-

ft away. The intensity of the fire, as detected by the sensor, was lower than when it was

closer; however, this may be modified during winter quarter by redesigning the tube to

ensure having the sensors aligned with the lens.

 Fig 22: Lens Test Setup Fig 23: 3D Tube (Front)

 Fig 24: UV Sensor with Lens (4ft) Fig 25: UV Sensor with Lens (6ft)

19

Fig 26: UV Sensor with Lens (8ft)

Safety of housing movement - How to detect if there are obstacles or people in the area

where the fire suppression system will be deployed.

Utilizing an ultrasonic sensor (Fig. 27) the system will be able to detect any obstructions

that will prevent the safe movement of the trolley from one point to another. It will halt the

movement so that the housing will not introduce damages to the user when moving. The

formula below will be integrated into the code that moves the system. Ultrasonic sensors

have a wide range that can used to ensure enough space and time for the unit to fully

stop.

Fig 27: Ultrasonic Sensor

D = 1/2 × (Rx-Tx time of wave) × Sonic Speed (1236 km/hr.)

20

Mechanical

Structural Strength - Analyze the strength and rigidity of the rail system and extinguisher

housing to ensure that it will be safe to have this system hanging above machinery.

This analysis was used to determine the strength of the ceiling mounts required to rigidly

support the gantry. An analysis of the strength and rigidity of the rail system and

extinguisher housing was calculated using statics to ensure that it will be safe to have

this system hanging above machinery. From this analysis it was calculated that each

ceiling connection must be able to support 80N of force and the x-gantry beams must

support 150N of force.

Motor Distance - Determine how many steps in stepper motor are required for how much x or y

movement.

The motor distance is required in order to determine how many steps in stepper motor

are required for how much x or y movement. This analysis has been integrated into the

code that drives the stepper motors. To calculate this a conversion from rotational

distance to linear distance was calculated. Those calculations were put into a python

code that would calculate the number of steps required given a desired coordinate. This

code was integrated into the final motor control code.

Motor Power - Calculate the amount of power for the motors controlling the movement and

select motors.

This analysis allowed Maroon Five to determine the force required to move our system

using an estimated payload. This force was calculated to be:

FReq. = 194.145 N

From the force calculation the required torque using the radius of the pinion (2 inches).

This calculated torque was then used to select a motor that will be able to provide

enough torque to move the payload.

21

System Dynamics - Evaluate the equation of motion of the trolley

This analysis along with the motor distance analysis will allow Maroon Five’s engineers

to accurately position the fire extinguisher housing above the fire. This analysis was

completed by looking at the dynamics of each individual part of the system and combine

them to give an equation of motion of the entire gantry system. Both axis use the same

rack and pinion so the equation can be applied to both axes. The equation of motion was

calculated to be:

𝑇 = (𝐼𝑝 + 𝐼𝑚) ∗ 𝜔𝑚 + 𝑟𝑝 ∗ 𝐹𝑇𝑟

Fire Safety - Calculate the heat transfer within the electronics housing to ensure system does

not overheat

A heat transfer analysis was completed to determine the safe operation of the

electronics needed to drive the motors. This analysis was conducted by using the

thermal resistance network and using the thermal properties of the materials for the

housing. The safe operating ambient internal temperature of the box is known based on

the electronics, and the equations are set up to be completed next quarter when the

orientation of this housing is fully designed. Currently it is not known where the full

gantry system will be tested, and this will determine the location of the housing for motor

electronics.

22

Risks Reduced or Remaining

After completing the risk reduction prototype and engineering analyses Maroon Five’s

electrical engineers were able to reduce multiple risks regarding the detection of a fire (Pg. 3),

distinguishing a fire from welding (Appendix Pg. 45), safely moving the housing (Pg. 16) and

extending the range of the sensors (Pg. 13). Also the power analysis was completed (Pg. 12) on

all the equipment used so that the right power supply could be purchased for the project.

For the sensors used in the RRP, it was found that the UV, IR and Thermal data were

the most reliable. These sensors, in addition to the ultrasonic sensor, will be used in the final

project. The UV sensor with the lens was also able to distinguish between a welding arc and a

fire. This means that moving forward, the system will be able to reliably detect a fire without

false alarms and from a reasonable distance. There are no remaining risks from an electrical

standpoint for this project.

After working on the mechanical risk reduction prototype the mechanical engineers were

able to reduce a variety of risks. The engineers were able to design and build a ceiling

connection system to connect the gantry system to the ceiling, develop mounting systems for

the motors, and were able to accurately control both motors using a single micro controller.

Through different engineering analyses, Maroon Five was able to determine factors of safety for

the strength of the system. Analyses also finalized an equation of motion for the system, giving

the engineers an understanding of the torque required from the motors and therefore the motor

sizing.

Moving forward there are a few risks that Maroon Five’s engineers must address. One of

those risks is developing more stable motor mounts that will allow for smoother movement of

the entire system, and completing the motor mount for M001. Another risk that must be

addressed is controlling the motors. The engineering team was able to successfully move the

motors in a single direction, however they were unable to move the motor in both directions.

This will be addressed through further research on the motors and the programming of the

motors. There are not many available resources which is why this was not completed prior to

this design review. Maroon Five has developed methods for addressing these issues and is

currently working on reducing this final risks and is confident that these methods will provide for

successful implementation of the final product.

23

Updated Project

Updated Electrical Block Diagram

24

Updated Mechanical Block Diagram

25

Rigorous winter break and first week schedule

Task Name Duration Start Finish Owner

Winter Break

Tasks

18 days Mon 12/10/18 Wed 1/2/19 All

 Motor Mount

Redesign

18 days Mon 12/10/18 Wed 1/2/19 Arik

 Rough Sketch 9 days Mon 12/10/18 Thu 12/20/18 Arik

 Initial CAD

Draft

9 days Fri 12/21/18 Wed 1/2/19 Arik

 Order Parts 18 days Mon 12/10/18 Wed 1/2/19 All

 Gear Rack 18 days Mon 12/10/18 Wed 1/2/19 Miranda

 Aluminum

Tubing

18 days Mon 12/10/18 Wed 1/2/19 Jeff

 Cable

Management

Track

18 days Mon 12/10/18 Wed 1/2/19 Arik

 Step Down

Buck Converter

18 days Mon 12/10/18 Wed 1/2/19 Jasmine

 Sensors 18 days Mon 12/10/18 Wed 1/2/19 Jasmine

 Relays 18 days Mon 12/10/18 Wed 1/2/19 Anas

26

 PCB 18 days Mon 12/10/18 Wed 1/2/19 EE Team

 PCB Design 11 days Mon 12/10/18 Sun 12/23/18 Jasmine

 Order PCB 8 days Mon 12/24/18 Wed 1/2/19 Anas

Winter Quarter 52 days Thu 1/3/19 Fri 3/15/19

 Week 1 4 days Thu 1/3/19 Tue 1/8/19 All

 Motor Mount

Redesign Final

Draft

4 days Thu 1/3/19 Tue 1/8/19 Arik

 Solder PCB 4 days Thu 1/3/19 Tue 1/8/19 Jasmine

 Ceiling Mount 4 days Thu 1/3/19 Tue 1/8/19 Miranda

 Draft of

Ceiling Mount

Design

4 days Thu 1/3/19 Tue 1/8/19 Miranda

 Drill Holes for

Rack Support

4 days Thu 1/3/19 Tue 1/8/19 Jeff

27

Preliminary Full Year Schedule

Winter Quarter

Task Name Duration Start Finish Owner

Winter Quarter 52 days Thu 1/3/19 Fri 3/15/19

 Week 1 4 days Thu 1/3/19 Tue 1/8/19 All

 Motor Mount Redesign Final

Draft

4 days Thu 1/3/19 Tue 1/8/19 Arik

 Solder PCB 4 days Thu 1/3/19 Tue 1/8/19 Jasmine

 Ceiling Mount 4 days Thu 1/3/19 Tue 1/8/19 Miranda

 Draft of Ceiling Mount

Design

4 days Thu 1/3/19 Tue 1/8/19 Miranda

 Drill Holes for Rack Support 4 days Thu 1/3/19 Tue 1/8/19 Jeff

 Week 2 5 days Wed 1/9/19 Tue 1/15/19 All

 Develop Fire Sensing

Algorithm

5 days Wed 1/9/19 Tue 1/15/19 Anas

 Finalize Specifications 5 days Wed 1/9/19 Tue 1/15/19 All

28

 Order Motor Mount Material 1 day Wed 1/9/19 Wed 1/9/19 Arik

 Address DR 1.2 Comments 5 days Wed 1/9/19 Tue 1/15/19 All

 Week 3 5 days Wed 1/16/19 Tue 1/22/19 All

 Sensor Communication 5 days Wed 1/16/19 Tue 1/22/19 Jasmine

 Back-up Power Supply 5 days Wed 1/16/19 Tue 1/22/19 Anas

 Power supply calculations 5 days Wed 1/16/19 Tue 1/22/19 Anas

 Order back-up Power Supply 5 days Wed 1/16/19 Tue 1/22/19 Anas

 Fabrication 5 days Wed 1/16/19 Tue 1/22/19 ME Team

 Cut Tubing to Length 5 days Wed 1/16/19 Tue 1/22/19 Arik

 Attach Gear Rack to Tubing 5 days Wed 1/16/19 Tue 1/22/19 Jeff

 Motor Mount Fabrication 5 days Wed 1/16/19 Tue 1/22/19 Miranda

 Actuation Design 5 days Wed 1/16/19 Tue 1/22/19 ME Team

 Design Actuation

System/CAD Draft

5 days Wed 1/16/19 Tue 1/22/19 Arik

29

 Gantry System 5 days Wed 1/16/19 Tue 1/22/19 ME Team

 CAD Draft 3 5 days Wed 1/16/19 Tue 1/22/19 Miranda

 SolidWorks Finite Element

Analysis

5 days Wed 1/16/19 Tue 1/22/19 Miranda

 Week 4 5 days Wed 1/23/19 Tue 1/29/19 All

 Testing 5 days Wed 1/23/19 Tue 1/29/19 EE Team

 Control and output location

communication

5 days Wed 1/23/19 Tue 1/29/19 Jasmine

 Extinguisher Housing 5 days Wed 1/23/19 Tue 1/29/19 ME Team

 Design Housing/Extinguisher

CAD Draft 1

5 days Wed 1/23/19 Tue 1/29/19 Miranda

 Actuation system 5 days Wed 1/23/19 Tue 1/29/19 ME Team

 Actuation CAD draft 2 5 days Wed 1/23/19 Tue 1/29/19 Arik

 Order Parts 5 days Wed 1/23/19 Tue 1/29/19 Arik

 Gantry System 5 days Wed 1/23/19 Tue 1/29/19 ME Team

30

 Integrate Motor Mount on

rails

5 days Wed 1/23/19 Tue 1/29/19 Jeff

 Week 5 5 days Wed 1/30/19 Tue 2/5/19 All

 Design Review 2.1 5 days Wed 1/30/19 Tue 2/5/19 All

 DR 2.1 Documentation 5 days Wed 1/30/19 Tue 2/5/19 Arik

 DR 2.1 Presentation Slide 5 days Wed 1/30/19 Tue 2/5/19 Miranda

 DR 2.1 Practice Video 5 days Wed 1/30/19 Tue 2/5/19 Jeff

 Extinguisher Housing 5 days Wed 1/30/19 Tue 2/5/19 All

 Extinguisher CAD Draft 2 5 days Wed 1/30/19 Tue 2/5/19 Jeff

 Order Housing Material 5 days Wed 1/30/19 Tue 2/5/19 Miranda

 Sweeping Motion CAD Draft

1

5 days Wed 1/30/19 Tue 2/5/19 Arik

 Actuation Code Draft 1 5 days Wed 1/30/19 Tue 2/5/19 Jasmine

 Week 6 5 days Wed 2/6/19 Tue 2/12/19 All

 Testing 5 days Wed 2/6/19 Tue 2/12/19 All

31

 Accuracy of Motor

Movement

5 days Wed 2/6/19 Tue 2/12/19 Arik

 Gantry System 5 days Wed 2/6/19 Tue 2/12/19 ME Team

 Order Limit Switches 5 days Wed 2/6/19 Tue 2/12/19 Arik

 Extinguisher Housing 5 days Wed 2/6/19 Tue 2/12/19 ME Team

 Fabricate Housing 5 days Wed 2/6/19 Tue 2/12/19 Jeff

 Sweeping Motion CAD Draft

2

5 days Wed 2/6/19 Tue 2/12/19 Arik

 Order parts for Sweeping

motion

5 days Wed 2/6/19 Tue 2/12/19 Arik

 Sweeping motion Code Draft

1

5 days Wed 2/6/19 Tue 2/12/19 Jasmine

 Week 7 5 days Wed 2/13/19 Tue 2/19/19 All

 Safety 5 days Wed 2/13/19 Tue 2/19/19 EE Team

 Code 5 days Wed 2/13/19 Tue 2/19/19 Jasmine

 Wire 5 days Wed 2/13/19 Tue 2/19/19 Anas

 Test 5 days Wed 2/13/19 Tue 2/19/19 Jasmine

32

 Gantry System 5 days Wed 2/13/19 Tue 2/19/19 ME Team

 Integrate Extinguisher

Housing

5 days Wed 2/13/19 Tue 2/19/19 Jeff

 Fabricate Sweeping Motion

system

5 days Wed 2/13/19 Tue 2/19/19 Arik

 Week 8 5 days Wed 2/20/19 Tue 2/26/19 All

 Electrical 5 days Wed 2/20/19 Tue 2/26/19 EE Team

 Integrate Electrical system 5 days Wed 2/20/19 Tue 2/26/19 Jasmine

 Test Electrical system 5 days Wed 2/20/19 Tue 2/26/19 Anas

 Gantry System 5 days Wed 2/20/19 Tue 2/26/19 ME Team

 Test Sweeping motion

system

5 days Wed 2/20/19 Tue 2/26/19 Miranda

 Week 9 5 days Wed 2/27/19 Tue 3/5/19 All

 Integrate Mechanical and

Electrical System

5 days Wed 2/27/19 Tue 3/5/19 All

 Cable Management 5 days Wed 2/27/19 Tue 3/5/19 Miranda

33

 Attach system to ceiling 5 days Wed 2/27/19 Tue 3/5/19 Jeff

 Wire sensors 5 days Wed 2/27/19 Tue 3/5/19 Jasmine

 Wire motors 5 days Wed 2/27/19 Tue 3/5/19 Arik

 Connect Power 5 days Wed 2/27/19 Tue 3/5/19 Anas

 Full System Functionality Test 5 days Wed 2/27/19 Tue 3/5/19 Jeff

 Week 10 5 days Wed 3/6/19 Tue 3/12/19 All

 Specification Verification 5 days Wed 3/6/19 Tue 3/12/19 All

 Electrical 5 days Wed 3/6/19 Tue 3/12/19 EE Team

 Mechanical 5 days Wed 3/6/19 Tue 3/12/19 ME Team

 Design Review 2.2 5 days Wed 3/6/19 Tue 3/12/19 All

 DR 2.2 Documentation 5 days Wed 3/6/19 Tue 3/12/19 Arik

 DR 2.2 Presentation Slide 5 days Wed 3/6/19 Tue 3/12/19 Jasmine

 DR 2.2 Practice Video 5 days Wed 3/6/19 Tue 3/12/19 Anas

34

 Week 11 (Finals Week) 3 days Wed 3/13/19 Fri 3/15/19 All

 Design Review 2.2 3 days Wed 3/13/19 Fri 3/15/19 All

Spring Quarter

Task Name Duration Start Finish Owner

Spring Quarter 54 days Mon 3/25/19 Thu 6/6/19 All

 Week 1 5 days Tue 3/26/19 Mon 4/1/19

 Address DR 2.2 Comments 5 days Tue 3/26/19 Mon 4/1/19

 Refine Motor mounts 5 days Tue 3/26/19 Mon 4/1/19 Jeff

 Update CAD Drawing 5 days Tue 3/26/19 Mon 4/1/19 Jeff

 Refine Motor Movement Code 5 days Tue 3/26/19 Mon 4/1/19 Jasmine

 Week 2 5 days Tue 4/2/19 Mon 4/8/19

 Refine Extinguisher Housing 5 days Tue 4/2/19 Mon 4/8/19 Arik

35

 Refine sensing algorithm 5 days Tue 4/2/19 Mon 4/8/19 Anas

 Week 3 5 days Tue 4/9/19 Mon 4/15/19

 Refine Sweeping actuation 5 days Tue 4/9/19 Mon 4/15/19 Arik

 Refine Sensor logic 5 days Tue 4/9/19 Mon 4/15/19 Jasmine

 Week 4 5 days Tue 4/16/19 Mon 4/22/19

 Refine Ceiling Supports 5 days Tue 4/16/19 Mon 4/22/19 Miranda

 Refine Back-up Power 5 days Tue 4/16/19 Mon 4/22/19 Anas

 Week 5 5 days Tue 4/23/19 Mon 4/29/19

 Design Review 3.1 5 days Tue 4/23/19 Mon 4/29/19 All

 DR 3.1 Documentation 5 days Tue 4/23/19 Mon 4/29/19 Jasmine

 DR 3.1 Presentation Slide 5 days Tue 4/23/19 Mon 4/29/19 Miranda

 DR 3.1 Practice Video 5 days Tue 4/23/19 Mon 4/29/19 Arik

 Week 6 5 days Tue 4/30/19 Mon 5/6/19

36

 DR 3.1 revisions 5 days Tue 4/30/19 Mon 5/6/19 Miranda

 Refine Safety code 5 days Tue 4/30/19 Mon 5/6/19 Jasmine

 Week 7 5 days Tue 5/7/19 Mon 5/13/19

 Test system with changes 5 days Tue 5/7/19 Mon 5/13/19 Arik

 Mechanical Testing 1 day Tue 5/7/19 Tue 5/7/19 Jeff

 Electrical Testing 1 day Tue 5/7/19 Tue 5/7/19 Anas

 Week 8 5 days Tue 5/14/19 Mon 5/20/19

 Specification Verification 5 days Tue 5/14/19 Mon 5/20/19

 Electrical 5 days Tue 5/14/19 Mon 5/20/19 Jasmine

 Mechanical 5 days Tue 5/14/19 Mon 5/20/19 Miranda

 Week 9 5 days Tue 5/21/19 Mon 5/27/19

 Design Review 3.2

Documentation

5 days Tue 5/21/19 Mon 5/27/19 All

 Section 1 5 days Tue 5/21/19 Mon 5/27/19 Anas

 Section 2 5 days Tue 5/21/19 Mon 5/27/19 Arik

37

 Section 3 5 days Tue 5/21/19 Mon 5/27/19 Jeff

 Section 4 5 days Tue 5/21/19 Mon 5/27/19 Jasmine

 Section 5 5 days Tue 5/21/19 Mon 5/27/19 Miranda

 Week 10 5 days Tue 5/28/19 Mon 6/3/19

 Design Review 3.2 Document

Revisions

5 days Tue 5/28/19 Mon 6/3/19 Miranda

 Final System Tests 5 days Tue 5/28/19 Mon 6/3/19 Jeff

 Week 11 (Finals Week) 1 day Tue 6/4/19 Tue 6/4/19

 Design Review 3.2

Presentation

1 day Tue 6/4/19 Tue 6/4/19 All

38

Appendix

Specification Supporting Material

Sensor Testing Code: Main

Main Class: This class was used to test and record the data from the sensors. It imports the

sensor class (below) which grabs the outputs from sensors.

"""

Jasmine Gill

Senior Design: RRP Testing

Class to test and record the data from the sensors to be analyzed later

**NOTE: I2C methods for sensor class, getThermalOutput() & getUVindexOutput()

 : ADC Channel Methods - getUVOutput(channel), getSmokeOutput(channel),

 getFlameOutput(channel), getUVS12SDOutput(channel)

"""

import Sensors

import time as t

#Channels on ADC that the sensors are attached to

#Currently only even channels are wired

#uv1Chan = 2

#smokeChan = 2

#flameChan = 2

#uv2Chan = 4

#Initialize sensors

#uv1Sensor = Sensors.Sensors()

#smokeSensor = Sensors.Sensors()

#flameSensor = Sensors.Sensors()

#uv2Sensor = Sensors.Sensors()

thermalCamera = Sensors.Sensors()

#uvIndex = Sensors.Sensors()

#Initialize text files to record data

#uv1Text = open("uvSmallflame.txt", "w")

#smokeText = open("smoke3.txt", "w")

#flameText = open("flame2.txt", "w")

#uv2Text = open("uv2.txt", "w")

thermalText = open("thermalFlame.txt", "w")

thermalTime = open("thermalTimeFlame.txt", "w")

#uvIndexText = open("uvIndex.txt", "w")

def writeToTxtFile(txtFile, data):

 txtFile.write(str(t.time()))

 txtFile.write(", ")

 txtFile.write(str(data))

 txtFile.write("\n")

def writeInitialTime(txtFile):

 txtFile.write(str(t.time()))

39

 txtFile.write("\n")

def main():

 try:

 #writeInitialTime(uv1Text)

 #writeInitialTime(smokeText)

 #writeInitialTime(flameText)

 #writeInitialTime(uv2Text)

 writeInitialTime(thermalTime)

 #writeInitialTime(uvIndexText)

 while True:

 #Comment out whatever sensors aren't being tested

 """

 uv1Data = uv1Sensor.getUVOutput(uv1Chan)

 writeToTxtFile(uv1Text, uv1Data)

 smokeData = smokeSensor.getSmokeOutput(smokeChan)

 writeToTxtFile(smokeText, smokeData)

 flameData = flameSensor.getFlameOutput(flameChan)

 writeToTxtFile(flameText, flameData)

 uv2Data = uv2Sensor.getUVS12SDOutput(uv2Chan)

 writeToTxtFile(uv2Text, uv2Data)

 """

 thermalData = thermalCamera.getThermalOutput()

 for row in thermalData:

 formatTemp = ['{0:.1f}'.format(temp) for temp in row]

 for num in formatTemp:

 thermalText.write(str(num))

 thermalText.write(" ")

 thermalText.write("\n")

 thermalTime.write(str(t.time()))

 thermalTime.write("\n")

 thermalText.write("\n")

 thermalText.write("New Reading")

 thermalText.write("\n")

 """

 uvIndexData = uvIndex.getUVindexOutput()

 writeToTxtFile(uvIndexText, uvIndexData)

 """

 t.sleep(.5)

 #Comment out the print lines for the sensors that aren't being used

 """

 print(uv1Data)

 print("")

 print(smokeData)

 print("")

40

 print(flameData)

 print("")

 print(uv2Data)

 print("")

 """

 for row in thermalData:

 print(['{0:.1f}'.format(temp) for temp in row])

 print("")

 print("New Reading")

 """

 print(uvIndexData)

 print("")

 """

 except KeyboardInterrupt:

 """

 uv1Text.close()

 smokeText.close()

 flameText.close()

 uv2Text.close()

 """

 thermalText.close()

 thermalTime.close()

 """

 uvIndexText.close()

 """

 print("")

 print("Program Stopped")

if __name__== "__main__":

 main()

Sensor Class

"""

Jasmine Gill

Senior Design: RRP Testing

Method to call each sensor and test it using a raspberry pi

Sensors In Order: UV GUVA S12D, Smoke Sensor, Flame Sensors 595391, IR Array Breakout MLX 90640,

GUVA S12SD, IR Thermal Camera AMG8833, UV Index Sensor VEML 6075

**NOTE: RPi can't read values for analog sensors, it requires an adc. For

 this class we used a MCP3008 chip which is capable of reading outputs

 from 7 sensors at a time. The I2C sensors are unaffected, their

 outputs can be read without the use of an ADC.**

"""

import RPi.GPIO as g #For the pins

import smbus #For I2C

import time

import adafruit_amg88xx

import adafruit_veml6075

import busio

import board

import Adafruit_GPIO.SPI as SPI

import Adafruit_MCP3008

41

#Setting board configurations (Hardware SPI - Using SPI0)

g.setmode(g.BCM)

SPI_PORT = 0

SPI_DEVICE = 0

mcp = Adafruit_MCP3008.MCP3008(spi=SPI.SpiDev(SPI_PORT, SPI_DEVICE))

class Sensors(object):

 def __init__(self):

 print('Sensor initialized')

 """

 Sensor 1: UV GUVA S12D

 Input: UV ray

 Output: Analog output

 Notes: Sensor must remain stationary to output reliable readings

 Power w/ 3.3V not 5, amazon page lies

 pin: Pin # that sensor is connected to

 """

 def getUVOutput(self, pin):

 val = mcp.read_adc(pin)

 return val

 """

 Sensor 2: MQ-2 Smoke Sensor

 Input: Smoke

 Output: Analog output, more smoke = higher voltage

 Notes: No Datasheet

 More smoke = Higher voltage

 pin: Pin # that sensor is connected to

 """

 def getSmokeOutput(self, pin):

 val = mcp.read_adc(pin)

 return val

 """

 Sensor 3: Phantom YoYo Flame Sensor: 595391

 Input: Light Source of flame

 Output: Analog or Digital output (Simple Binary, 1 for flame detected, 0 for not)

 Notes: May need to be ~50 cm to the fire, detection wavelength: 760-1100 nm

 Optimal mounting angle= 60 degrees

 pin: Pin # that sensor is connected to

 """

 def getFlameOutput(self, pin):

 val = mcp.read_adc(pin)

 return val

 """

 Sensor 4: MLX 90640 IR Array Breakout - SparkFun

 Input: Surface Temperature

 Output: Array containing temperatures in the cameras field of view

42

 Notes: Detects Surface Area Temperatures from a few feet

 +- 1.5C, Temp Range: -40C to 300C

 Baud Rate: 115200

 busPin: Bus pin # (0 or 1) that the array is connected

 address: I2C address of the array (0x33)

 Chip doesn't work with raspberry pi

 """

 def getIRarrayOutput(self, busPin, address, cmdSize):

 self.busPin = busPin

 self.address = address

 self.cmdSize = cmdSize

 bus = smbus.SMBus(busPin)

 time.sleep(1)

 data = bus.read_byte_data(address, 0x07)

 temp = data * .02 - 273.15

 """arraySize = len(data)

 print(arraySize)

 num = 0

 while(num != arraySize):

 print(data[num])

 num+= 1

 print()

 print()"""

 print(data)

 return temp

 """

 Sensor 5: UV S12SD - UV Sensor

 Input: UV Rays

 Output: Analog output

 Notes: Sensor must remain stationary to output reliable readings

 pin: Pin # that sensor is connected to

 """

 def getUVS12SDOutput(self, pin):

 val = mcp.read_adc(pin)

 return val

 """

 Sensor 6: 2nd IR Thermal Camera (adafruit)

 Input: Temperature

 Output: Temp array

 Notes: Need adafruit_adxx library

 Max Frame Rate = 10 Hz

 8x8 array of IR Thermal cameras

 Temp Range: 32-176F

 Address: 0x69

 """

 def getThermalOutput(self):

43

 i2c_bus = busio.I2C(board.SCL, board.SDA)

 sensor = adafruit_amg88xx.AMG88XX(i2c_bus)

 time.sleep(0.1) #Wait for sensor boot

 data = sensor.pixels

 return data

 """

 Sensor 7: UVA/UVB/UV Sensor

 Input: UV Rays

 Output: UV Index

 Notes: Address: 0x10

 """

 def getUVindexOutput(self):

 i2c = busio.I2C(board.SCL, board.SDA)

 sensor = adafruit_veml6075.VEML6075(i2c, integration_time = 100)

 data = sensor.uv_index

 return data

 """

 Private helper function to scale output from sensors to

 values that will be useful for analysis

 """

 def __calcWavelength(self, num, minimum, maximum, a, b):

 """min & max are numberes to be scaled

 a & b are values to be scaled to"""

 scaledNum = (((b - a)*(num - minimum)) / (maximum - minimum)) + a

 return scaledNum

Motor Testing Code

Main: This class sets the motor pulse, frequency and sends it a position to move to.

44

"""

Test program to move the motor to the desired location

"""

import setepperMotorClass

import time as t

#Run the motor

def main():

 try:

 motorTest = setepperMotorClass.stepperMotorClass(40, 36) #position in inches

 motorTest.setPulseTime(500) #microseconds

 motorTest.getPulseTime()

 motorTest.setFrequency(4000) #hertz

 motorTest.getFrequency()

 motorTest.moveMotor()

 motorTest.stopMotors()

 except KeyboardInterrupt:

 g.stop()

if __name__=="__main__":

 main()

45

Stepper Motor Class: This code drives the motor and sets the values specified in main motor

class above. Currently the motor does not turn counterclockwise so the motorRev function

doesn’t work. This will be addressed further in winter quarter.

"""

Jasmine Gill

Motor Control Script - Test

Python 3.5.3

Stepper Motor: 34HS46-5004D1

Motor Driver: DM860T

Senior Design - Fall Qtr Mechanical RRP

 DO THIS FIRST

NOTE: Before running the program open the terminal

 and run the following command:

 sudo pigpiod -s 1

Motor Wiring:

Red/Black: A/C

Yellow/Blue: B/D

Steps:

 A B C D

1: + + - -

2: - + + -

3: - - + +

4: + - - +

CW : 1 -> 4

CCW: 4 -> 1

Driver Wiring:

DIR- : RPi GPIO Pin

DIR+ : Rpi GPIO PIn

PUL- : Wire to Ground

PUL+ : Rpi GPIO PIn

ENA- : Don't wire

ENA+ : Don't wire

"""

#Import Libraries

import pigpio

import time as t

import math

#Connect to pigpiod daemon

g = pigpio.pi()

46

class stepperMotorClass(object):

 #Class Varibles

 #Motor X pins

 motorXDirM = 21

 motorXDirP = 16

 motorXPulP = 12

 #Motor Y PIns

 motorYDirM = 26

 motorYDirP = 13

 motorYPulP = 6

 #Setting default pulse and frequency

 g.set_PWM_frequency(motorXPulP, 4000)

 g.set_PWM_frequency(motorYPulP, 4000)

 pulseTime = 500

 #Pinion Radius in inches

 radius = 1

 #Motor angle

 angle = 1.8

 def __init__(self, xPOS, yPOS):

 if(xPOS >=48 or yPOS >= 48 or (xPOS <=0 and yPOS <= 0)):

 print("INVALID COORDINATES")

 else:

 self.xPOS = xPOS

 self.yPOS = yPOS

 self.__setup()

 def __setup(self):

 #XMotor Pin Setup

 g.set_mode(self.motorXDirM, pigpio.OUTPUT)

 g.set_mode(self.motorXDirP, pigpio.OUTPUT)

 g.set_mode(self.motorXPulP, pigpio.OUTPUT)

 #UNCOMMENT THIS WHEN SECOND MOTOR IS HOOKED UP

 #YMotor Pin Setup

 g.set_mode(self.motorYDirM, pigpio.OUTPUT)

 g.set_mode(self.motorYDirP, pigpio.OUTPUT)

 g.set_mode(self.motorYPulP, pigpio.OUTPUT)

 """

 Method to set the pins for the motor that moves in the

 X-direction. Use this method to set the pins if original

 pins above don't work

 """

 def setXMotorPins(self, motorXDirM, motorXDirP, motorXPulP):

 self.motorXDirM = motorXDirM

 self.motorXDirP = motorXDirP

 self.motorXPulP = motorXPulP

47

 #X-Movement Motor Pin Setup

 g.set_mode(motorXDirM, pigpio.OUTPUT)

 g.set_mode(motorXDirP, pigpio.OUTPUT)

 g.set_mode(motorXPulP, pigpio.OUTPUT)

 def getXMotorPins(self):

 print("MotorXDirM Pin: ", self.motorXDirM)

 print("MotorXDirP Pin: ", self.motorXDirP)

 print("MotorXPulP Pin: ", self.motorXPulP)

 """

 Method to set the pins for the motor that moves in the

 Y-direction. Use this method to set the pins if original

 pins above don't work

 """

 def setYMotorPins(self, motorYDirM, motorYDirP, motorYPulP):

 self.motorYDirM = motorYDirM

 self.motorYDirP = motorYDirP

 self.motorYPulP = motorYPulP

 #Y-Movement Motor Pin Setup

 g.set_mode(motorYDirM, pigpio.OUTPUT)

 g.set_mode(motorYDirP, pigpio.OUTPUT)

 g.set_mode(motorYPulP, pigpio.OUTPUT)

 def getYMotorPins(self):

 print("MotorYDirM Pin: ", self.motorYDirM)

 print("MotorYDirP Pin: ", self.motorYDirP)

 print("MotorYPulP Pin: ", self.motorYPulP)

 """

 Set time for pulses

 Shorter pulses = faster motor movement supposedly but some don't work

 Limitations: 500micr for 800 pulses/rev setting so far

 send time in microseconds

 """

 def setPulseTime(self, micros):

 self.pulseTime = micros

 def getPulseTime(self):

 print(self.pulseTime)

 """

 Set the frequency: How fast the pulses are sent

 sent frequency in hertz

 """

 def setFrequency(self, hertz):

 g.set_PWM_frequency(self.motorXPulP, hertz)

 g.set_PWM_frequency(self.motorYPulP, hertz)

 def getFrequency(self):

 print(g.get_PWM_frequency(self.motorXPulP))

 print(g.get_PWM_frequency(self.motorYPulP))

 """

 Set Pinion Radius in inches

 """

 def setPinionRadius(self,pinionRadius):

48

 self.radius = pinionRadius

 def getPinionRadius(self):

 print(self.radius)

 def setMotorAngle(self,motorAngle):

 self.angle = motorAngle

 def getMotorAngle(self):

 print(self.angle)

 def stopMotors(self):

 g.wave_clear()

 def moveMotor(self):

 g.wave_clear()

 #Motor movement to the coordinates given

 xSteps = self.__calcSteps(self.xPOS)

 self.__motorFWD(xSteps, self.motorXPulP)

 print('boop')

 #self.__motorRev(xSteps, self.motorXDirM)

 #UNCOMMENT THIS WHEN 2ND MOTOR IS HOOKED UP

 ySteps = self.__calcSteps(self.yPOS)

 self.__motorFWD(ySteps, self.motorYPulP)

 print('beep')

 """

 if(ySteps > 2700):

 num2 = ySteps/2700;

 intNum2 = int(num2)

 for i in range (intNum2):

 self.__motorFWD(2700, self.motorYPulP)

 remSteps2 = (ySteps - (2700*intNum2))

 self.__motorFWD(int(remSteps2, self.motorYPulP)

 """

#Private methods

 def __dirCW(self):

 #Xmotor

 g.write(self.motorXDirP, 1)

 g.write(self.motorXDirM, 0)

 #Ymotor

 g.write(self.motorYDirP, 1)

 g.write(self.motorYDirM, 0)

 def __dirCCW(self):

 #Xmotor

 g.write(self.motorXDirP, 0)

 g.write(self.motorXDirM, 1)

 #Ymotor

 g.write(self.motorYDirP, 0)

 g.write(self.motorYDirM, 1)

49

 def __motorFWD(self, steps, motorPulsePin):

 self.__dirCW()

 t.sleep(.1) #wait

 g.wave_clear()

 limit = 1100

 if(steps > limit):

 num = steps/limit;

 intNum = int(num)

 print(intNum)

 chain= [0] * (2)

 wf = []

 #Create a chain of waves with 2700 steps

 for i in range(limit):

 wf.append(pigpio.pulse(1<<motorPulsePin, 0, self.pulseTime))

 wf.append(pigpio.pulse(0, 1<<motorPulsePin, self.pulseTime))

 g.wave_add_generic(wf)

 chain[0] = g.wave_create()

 for i in range(intNum):

 g.wave_chain(chain)

 while(g.wave_tx_busy() == True):

 t.sleep(g.wave_get_micros() * 10**-6)

 chain2 = [0] * 2

 #Add the remaining steps to the chain of waves

 remSteps = (steps - (limit*intNum))

 for i in range (remSteps):

 wf.append(pigpio.pulse(1<<motorPulsePin, 0, self.pulseTime))

 wf.append(pigpio.pulse(0, 1<<motorPulsePin, self.pulseTime))

 g.wave_add_generic(wf)

 chain2[0] = g.wave_create()

 #Trasmit the wave chain

 g.wave_chain(chain2)

 else:

 wf = []

 for i in range (steps):

 wf.append(pigpio.pulse(1<<motorPulsePin, 0, self.pulseTime))

 wf.append(pigpio.pulse(0, 1<<motorPulsePin, self.pulseTime))

 g.wave_add_generic(wf)

 wave = g.wave_create()

 g.wave_send_once(wave)

 def __motorRev(self, steps, motorPulsePin):

 self.__dirCW()

 t.sleep(.1) #wait

 g.wave_clear()

 limit = 1100

50

 if(steps > limit):

 num = steps/limit;

 intNum = int(num)

 print('intnum')

 print(intNum)

 chain= [0] * (2)

 wf = []

 #Create a chain of waves with 1100 steps

 for i in range(limit):

 wf.append(pigpio.pulse(0, 1<<motorPulsePin, self.pulseTime))

 wf.append(pigpio.pulse(1<<motorPulsePin, 0, self.pulseTime))

 g.wave_add_generic(wf)

 chain[0] = g.wave_create()

 for i in range(intNum):

 g.wave_chain(chain)

 while(g.wave_tx_busy() == True):

 t.sleep(g.wave_get_micros() * 10**-6)

 chain2 = [0] * 2

 #Add the remaining steps to the chain of waves

 remSteps = (steps - (limit*intNum))

 for i in range (remSteps):

 wf.append(pigpio.pulse(0, 1<<motorPulsePin, self.pulseTime))

 wf.append(pigpio.pulse(1<<motorPulsePin, 0, self.pulseTime))

 g.wave_add_generic(wf)

 chain2[0] = g.wave_create()

 #Trasmit the wave chain

 g.wave_chain(chain2)

 else:

 wf = []

 for i in range (steps):

 wf.append(pigpio.pulse(0, 1<<motorPulsePin, self.pulseTime))

 wf.append(pigpio.pulse(1<<motorPulsePin, 0, self.pulseTime))

 g.wave_add_generic(wf)

 wave = g.wave_create()

 g.wave_send_once(wave)

 def __calcSteps(self, position):

 turns = math.degrees(position/self.radius)

 steps = turns/0.225;

 print(steps)

 return int(steps)

51

Welding Arc vs Fire Detection

 Appendix Fig 1: Welding UV Values (4ft) Appendix Fig 2: Welding UV Values (6ft)

Appendix Fig 3: Welding UV Values (8ft)

One of the concerns that Maroon 5 engineers had was having the system distinguish between a

welding arc and a flame. Upon testing the UV sensor on a welding arc and comparing the data

gathered to the flame data, it was surmised that the sensors are able to distinguish between the

two. However, this was only when the sensor was placed four feet away from the welding area.

When the sensors were directed towards the welding arc the UV values (Appendix Fig. 1) were

much larger than those of a normal flame (Fig. 5 & 6).

As the UV sensor was moved away from the welding area (Appendix Fig. 2 & 3) it was still able

to detect welding but the intensity was much lower. To extend the range of the sensor a lens

placed in front of the sensor (similar to the range testing done for flame testing) and it was found

that the sensor was able to get values that were much higher (Appendix Fig. 4 & 5). The only

problem that was found in this case was that the sensor had to be pointed exactly where the

welding arc was being used due to the lens reducing the sensors field of view.

52

 Appendix Fig 4: UV Values (4ft) Appendix Fig 5: UV Values (6ft)

53

Engineering Analysis Supporting Material

Power Consumption

Relays to generate 5V signals

Converting 11.1V to 5V with max. of 2A

54

System Dynamics Analysis

55

56

Motor Distance Code

57

Structural Strength Analysis

58

59

60

Heat Transfer Analysis

61

Motor Power Calculations

62

References

[1]

07, 2017 Feb. “Preventing the Five Major Causes of Industrial Fires and Explosions.”

Occupational Health & Safety, ohsonline.com/articles/2017/02/07/preventing-the-five-major-

causes-of-industrial-fires-and-explosions.aspx.

[2]

Wilhite, David. “The Case For Supplementary Fire Suppression.” Modern Machine Shop,

Modern Machine Shop, 11 Sept. 2009, www.mmsonline.com/articles/the-case-for-

supplementary-fire-suppression.

